
Mock Exam Geometry - June 2018

Note: This exam consists of four problems. Usage of the theory and examples of

Chapters 1:1-5, 2:1-5, 3:1-3, 4:1-6 of Do Carmo's textbook is allowed. You may not

use the results of the exercises, with the exception of the results of Exercise 1-5:2,12,

4-3:1,2. Give a precise reference to the theory and/or exercises you use for solving

the problems.

Problem 1 (10+10 = 20 pt.)

Consider the twisted cubic in R3, parametrized by α(t) = (t, t2, t3).

1. Calculate the curvature and torsion of the twisted cubic at an arbitrary point

α(t).

2. Calculate the Frenet frame {t(0),n(0),b(0)} of the twisted cubic at the point

α(0) = (0, 0, 0).

Problem 2 (10+10=20 pt.)

Let g : R → R be a C∞-function, and let f : R2 → R be given by

f(x, y) = g(x2 + y2),

and let the surface S in R3 be the graph of f.

1. Prove that the point (x0, y0) is elliptic i� ∆(x0, y0) > 0, and hyperbolic i�

∆(x0, y0) < 0, where

∆(x, y) = g ′(R)
(
g ′(R) + 2Rg ′′(R)

)
,

with R = x2 + y2.

2. Let f(x, y) = x2 + y2 − (x2 + y2)2. Prove that the points of S that are neither

elliptic nor hyperbolic form two circles, both consisting of parabolic points.

(Note: in particular, S does not have any planar points.)

Problem 3 (8 + 8 + 9 = 25 pt.)

Let S be a regular surface in R3.

1. Prove: If S contains a line, then this line is an asymptotic curve of S.

In the remainder of this assignment S is a one-sheeted hyperboloid of revolution given

by x2 + y2 − z2 = 1. Furthermore, p is the point (1, 0, 0) of S.

2. Show that the principal curvatures of S at p are equal to 1 and −1, and deter-

mine the curvature lines of S through p.

3. Determine both asymptotic directions of S at p, and the corresponding asymp-

totic curves of S through p.
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Problem 4 (8 + 8 + 9 = 25 pt.)

Let C be a regular curve (without self-intersections) in the half-plane {(x, 0, z) | x > 0}.

Let S be the surface of revolution in R3 obtained by rotating C about the z-axis.

1. Which meridians of S are geodesics? Give a proof of your statement(s).

2. Which parallel circles of S are geodesics? Give a proof of your statement(s).

The angular momentum of a regular curve α : R → S at α(t) is equal to α(t)∧α ′(t).

3. Prove that the z-component of the angular momentum of a geodesic on S is

constant (i.e., independent of t).
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Solutions

Problem 1.

1. We use the expressions for curvature and torsion from Exercise 1-5:12. To this end

we compute

α ′ =

 1

2t

3t2

 , α ′′ =

 02
6t

 , α ′′′ =

00
6

 , hence α ′ ∧ α ′′ =

 6t2−6t

2

 .
Therefore,

k(t) =
|α ′ ∧ α ′′ |

|α ′ |3/2
= 2

√
1+ 9t2 + 9t4

(1+ 4t2 + 9t4)3
,

τ(t) = −
det(α ′, α ′′, α ′′′)

|α ′ ∧ α ′′ |2
= −

3

1+ 9t2 + 9t4
.

2. We know that

t =
α ′

|α ′ |
, b =

α ′ ∧ α ′′

|α ′ ∧ α ′′ |
, n = b∧ t.

Therefore,

t(0) =

10
0

 , b(0) =

00
1

 , n(0) =

01
0

 .
Problem 2.

1. Use Example 6.5.4 of the �rst edition, which is Example 6.6.5 in the second edition:

a point (x, y, f(x, y)) is elliptic (hyperbolic) i� fxxfyy − f
2
xy is positive (negative) at

the point (x, y). A straightforward computation yields

fx = 2xg
′(R),

fy = 2yg
′(R),

fxx = 2g
′(R) + 4x2g ′′(R),

fxy = 4xyg
′′(R),

fyy = 2g
′(R) + 4y2g ′′(R).

The claim follows from fxxfyy − f
2
xy = 4g

′(R)2 + 8Rg ′(R)g ′′(R) = 4∆(x, y).

2. In this particular case, g(R) = R − R2, so ∆(x, y) = (1 − 2R)(1 − 6R). The set of

points that are neither hyperbolic nor elliptic are the points on the graph of f with

R = x2 + y2 = 1
2 , z = g(R) = 1

4 or R = x2 + y2 = 1
6 , z = g(R) = 5

36 , which constitute

two circles on S. These points are parabolic, and not planar, since at these points f

has at least one non-zero second derivative.
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Problem 3.

1. Let α(s) be a regular parametrization of the line, and let v be the direction vector

of the line. Let N(s) denote a di�erentiable unit normal vector �eld of S at α(s).

Since the line lies on S, we have 〈N(s),v〉 = 0 for all s, so 〈N ′(s),v〉 = 0. Therefore,
the normal curvature at every point of the line in the direction v is zero, so the line

is an asymptotic curve of S.

2. The lines of curvature of a surface of revolution are the meridians and the parallel

circles. See [Do Carmo, Example 4 on page 161]. Therefore, the lines of curvature

through p are the unit circle in the xy-plane (the parallel circle through p), and the

branch of the hyperbola in the xz-plane with equation x2−z2 = 1, y = 0 that contains

p (the meridian through p).

The corresponding principal directions are e2 and e3, respectively (the second

and third vector of the standard basis of TpR3). Since S is given by f(x, y, z) :=

x2 + y2 − z2 − 1 = 0, a unit normal �eld of S is

N(x, y, z) =
∇f
|∇f |

(x, y, z) =
1√

x2 + y2 + z2

 x

y

−z

 =
1√

1+ 2z2

 x

y

−z

 .
Note thatN(p) = e1 (the �rst vector of the standard basis of TpR3). The parallel circle
through p has parametrization α(t) = (cos t, sin t, 0), with α(0) = p and α ′(0) = e2.

The normal along this curve is

N(t) =

cos t

sin t

0

 .
Therefore, N ′(0) = e2, so the normal curvature of S at p in the direction e2 is equal

to kn(e2) = −〈N ′(0), e2〉 = −1.

The meridian through p has parametrization β(t) = (
√
1+ t2, 0, t), with β(0) = p

and β ′(0) = e3. A similar computation shows that the normal curvature of this curve

at p is equal to kn(e3) = 1.

Summarizing: the principal curvatures of S at p are −1 and 1, corresponding to

the principal directions e2 and e3, respectively.

3. According to Euler's relation the asymptotic directions of S at p are given by

(cos ϑ) e2 + (sin ϑ) e3, with (−1) cos2 ϑ + (+1) sin2 ϑ = 0, or, equivalently, tan2 ϑ = 1.

Therefore ϑ = ±π4 , so the asymptotic directions of S at p are e2 ± e3.
The lines through p with these asymptotic directions as direction vectors are

parametrized by s 7→ (1, s,±s). These lines are on S, so they are the asymptotic

curves of S through p (cf Part 1).

Problem 4.

Let the curve in the xz-plane be parametrized by s 7→ (f(s), 0, g(s)), with f(s) > 0

for all s in the parameter interval I. Since the curve is regular, we may assume that
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is has unit speed, i.e.,

f ′(s)2 + g ′(s)2 = 1.

A parametrization of the surface is given by

x(u, v) = (f(v) cosu, f(v) sinu, g(v)),

with (u, v) ∈ U∧ I. Here U is a suitable parameter domain for the angular variable

u. A simple computation (see Example 4 on page 161) shows that the coe�cients of

the �rst fundamental form are given by

E(u, v) = f(v)2, F(u, v) = 0, G(u, v) = 1.

1. Since G = 1, a meridian of S has unit speed parametrization α(s) = x(u0, s)), for

some �xed u0 ∈ R. We claim that its acceleration vector α ′′(s) is perpendicular to S

at every point α(s). To see this, observe that α ′′(s) = xvv(u0, s), and

〈xvv,xu〉 = Fv − 1
2Gu = 0, and 〈xvv,xv〉 = 1

2Gv = 0.

Therefore, α ′′(s) is perpendicular to Tα(s)S for all s. Therefore, every meridian is a

geodesic of S.

2. Since E is constant along a parallel circle v = v0 of S, such a parallel circle has

unit speed parametrization β(s) = x(ω0s, v0), for a suitably chosen ω0 > 0. More

precisely, β ′(s) = ω0xu(ω0s, v0), so

|β ′(s)| = ω0
√
E(ω0s, v0) = ω0f(v0),

so we take ω0 = f(v0)
−1. We look for parallels with β ′′(s) perpendicular to S for all

s. Since β ′′(s) = ω20xuu(ω0s, v0), and

〈xuu,xu〉 = 1
2Eu = 0, and 〈xuu,xv〉 = Fu − 1

2Ev = −ff ′,

we see that

〈β ′′(s),xu(ω0s, v0)〉 = 0,

and

〈β ′′(s),xv(ω0s, v0)〉 = −ω20f(v0)f
′(v0) = −ω0f

′(v0).

Therefore, the parallel circle is a geodesic i� f ′(v0) = 0 (since ω0 > 0), i.e., i� the

contour curve C has a vertical tangent at (f(v0), 0, g(v0)). Equivalently, in this case

the meridian through every point of the parallel circle has a vertical tangent.

3. Let γ(t) = x(u(t), v(t)) be a curve on S, then

〈γ∧ γ ′, e3〉 = u ′〈x∧ xu, e3〉+ v ′〈x∧ xv, e3〉,

where u ′, v ′, γ and γ ′ are evaluated at t, and x,xu and xv are evaluated at (u(t), v(t)).

Let ξ(u, v) = f(v) cosu and η(u, v) = f(v) sinu be the x- and the y-component of

x(u, v), respectively. Then

〈x∧ xu, e3〉 =
∣∣∣∣ξ ξu
η ηu

∣∣∣∣ =
∣∣∣∣∣∣
f(v) cosu −f(v) sinu

f(v) sinu f(v) cosu

∣∣∣∣∣∣ = f(v)2.
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A similar computation shows that 〈x∧ xv, e3〉 = 0. Therefore,

〈γ∧ γ ′, e3〉 = f(v(t))2 u ′(t).

If γ is a geodesic, then f2u ′ is constant along γ. See Clairaut's relation on page 256.

In other words, the angular momentum is constant along geodesics.
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