Mock Exam Geometry - June 2018

Note: This exam consists of four problems. Usage of the theory and examples of Chapters 1:1-5, 2:1-5, 3:1-3, 4:1-6 of Do Carmo's textbook is allowed. You may not use the results of the exercises, with the exception of the results of Exercise 1-5:2,12, $4-3: 1,2$. Give a precise reference to the theory and/or exercises you use for solving the problems.

Problem $1(10+10=20 \mathrm{pt}$.
Consider the twisted cubic in \mathbb{R}^{3}, parametrized by $\alpha(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}\right)$.

1. Calculate the curvature and torsion of the twisted cubic at an arbitrary point $\alpha(\mathrm{t})$.
2. Calculate the Frenet frame $\{\mathbf{t}(0), \mathbf{n}(0), \mathbf{b}(0)\}$ of the twisted cubic at the point $\alpha(0)=(0,0,0)$.

Problem $2(10+10=20 \mathrm{pt}$)
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{∞}-function, and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=g\left(x^{2}+y^{2}\right)
$$

and let the surface S in \mathbb{R}^{3} be the graph of f.

1. Prove that the point $\left(x_{0}, y_{0}\right)$ is elliptic iff $\Delta\left(x_{0}, y_{0}\right)>0$, and hyperbolic iff $\Delta\left(x_{0}, y_{0}\right)<0$, where

$$
\Delta(x, y)=g^{\prime}(R)\left(g^{\prime}(R)+2 R g^{\prime \prime}(R)\right)
$$

with $R=x^{2}+y^{2}$.
2. Let $f(x, y)=x^{2}+y^{2}-\left(x^{2}+y^{2}\right)^{2}$. Prove that the points of S that are neither elliptic nor hyperbolic form two circles, both consisting of parabolic points. (Note: in particular, S does not have any planar points.)

Problem 3 ($8+8+9=25$ pt.)
Let S be a regular surface in \mathbb{R}^{3}.

1. Prove: If S contains a line, then this line is an asymptotic curve of S.

In the remainder of this assignment S is a one-sheeted hyperboloid of revolution given by $x^{2}+y^{2}-z^{2}=1$. Furthermore, p is the point $(1,0,0)$ of S.
2. Show that the principal curvatures of S at p are equal to 1 and -1 , and determine the curvature lines of S through p.
3. Determine both asymptotic directions of S at p, and the corresponding asymptotic curves of S through p.

Problem $4(8+8+9=25$ pt. $)$
Let C be a regular curve (without self-intersections) in the half-plane $\{(x, 0, z) \mid x>0\}$. Let S be the surface of revolution in \mathbb{R}^{3} obtained by rotating C about the z-axis.

1. Which meridians of S are geodesics? Give a proof of your statement(s).
2. Which parallel circles of S are geodesics? Give a proof of your statement(s).

The angular momentum of a regular curve $\alpha: \mathbb{R} \rightarrow S$ at $\alpha(t)$ is equal to $\alpha(t) \wedge \alpha^{\prime}(t)$.
3. Prove that the z-component of the angular momentum of a geodesic on S is constant (i.e., independent of t).

Solutions

Problem 1.

1. We use the expressions for curvature and torsion from Exercise 1-5:12. To this end we compute

$$
\alpha^{\prime}=\left(\begin{array}{c}
1 \\
2 \mathrm{t} \\
3 \mathrm{t}^{2}
\end{array}\right), \quad \alpha^{\prime \prime}=\left(\begin{array}{c}
0 \\
2 \\
6 \mathrm{t}
\end{array}\right), \quad \alpha^{\prime \prime \prime}=\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right), \text { hence } \alpha^{\prime} \wedge \alpha^{\prime \prime}=\left(\begin{array}{c}
6 \mathrm{t}^{2} \\
-6 \mathrm{t} \\
2
\end{array}\right)
$$

Therefore,

$$
\begin{aligned}
& k(t)=\frac{\left|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right|}{\left|\alpha^{\prime}\right|^{3 / 2}}=2 \sqrt{\frac{1+9 t^{2}+9 t^{4}}{\left(1+4 t^{2}+9 t^{4}\right)^{3}}} \\
& \tau(\mathrm{t})=-\frac{\operatorname{det}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right)}{\left|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right|^{2}}=-\frac{3}{1+9 t^{2}+9 t^{4}}
\end{aligned}
$$

2. We know that

$$
\mathbf{t}=\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, \quad \mathbf{b}=\frac{\alpha^{\prime} \wedge \alpha^{\prime \prime}}{\left|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right|}, \quad \mathbf{n}=\mathbf{b} \wedge \mathbf{t}
$$

Therefore,

$$
\mathbf{t}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{b}(0)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \mathbf{n}(0)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Problem 2.

1. Use Example 6.5.4 of the first edition, which is Example 6.6.5 in the second edition: a point $(x, y, f(x, y))$ is elliptic (hyperbolic) iff $f_{x x} f_{y y}-f_{x y}^{2}$ is positive (negative) at the point (x, y). A straightforward computation yields

$$
\begin{aligned}
f_{x} & =2 x g^{\prime}(R) \\
f_{y} & =2 y g^{\prime}(R) \\
f_{x x} & =2 g^{\prime}(R)+4 x^{2} g^{\prime \prime}(R), \\
f_{x y} & =4 x y g^{\prime \prime}(R) \\
f_{y y} & =2 g^{\prime}(R)+4 y^{2} g^{\prime \prime}(R)
\end{aligned}
$$

The claim follows from $f_{x x} f_{y y}-f_{x y}^{2}=4 g^{\prime}(R)^{2}+8 R g^{\prime}(R) g^{\prime \prime}(R)=4 \Delta(x, y)$.
2. In this particular case, $g(R)=R-R^{2}$, so $\Delta(x, y)=(1-2 R)(1-6 R)$. The set of points that are neither hyperbolic nor elliptic are the points on the graph of f with $R=x^{2}+y^{2}=\frac{1}{2}, z=g(R)=\frac{1}{4}$ or $R=x^{2}+y^{2}=\frac{1}{6}, z=g(R)=\frac{5}{36}$, which constitute two circles on S. These points are parabolic, and not planar, since at these points f has at least one non-zero second derivative.

Problem 3.

1. Let $\alpha(s)$ be a regular parametrization of the line, and let \mathbf{v} be the direction vector of the line. Let $N(s)$ denote a differentiable unit normal vector field of S at $\alpha(s)$. Since the line lies on S, we have $\langle N(s), \mathbf{v}\rangle=0$ for all s, so $\left\langle N^{\prime}(s), \mathbf{v}\right\rangle=0$. Therefore, the normal curvature at every point of the line in the direction v is zero, so the line is an asymptotic curve of S.
2. The lines of curvature of a surface of revolution are the meridians and the parallel circles. See [Do Carmo, Example 4 on page 161]. Therefore, the lines of curvature through p are the unit circle in the $x y$-plane (the parallel circle through p), and the branch of the hyperbola in the $x z$-plane with equation $x^{2}-z^{2}=1, y=0$ that contains p (the meridian through p).

The corresponding principal directions are e_{2} and e_{3}, respectively (the second and third vector of the standard basis of $\left.T_{p} \mathbb{R}^{3}\right)$. Since S is given by $f(x, y, z):=$ $x^{2}+y^{2}-z^{2}-1=0$, a unit normal field of S is

$$
N(x, y, z)=\frac{\nabla f}{|\nabla f|}(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\left(\begin{array}{c}
x \\
y \\
-z
\end{array}\right)=\frac{1}{\sqrt{1+2 z^{2}}}\left(\begin{array}{c}
x \\
y \\
-z
\end{array}\right)
$$

Note that $N(p)=e_{1}$ (the first vector of the standard basis of $T_{p} \mathbb{R}^{3}$). The parallel circle through p has parametrization $\alpha(t)=(\cos t, \sin t, 0)$, with $\alpha(0)=p$ and $\alpha^{\prime}(0)=e_{2}$. The normal along this curve is

$$
\mathrm{N}(\mathrm{t})=\left(\begin{array}{c}
\cos \mathrm{t} \\
\sin \mathrm{t} \\
0
\end{array}\right)
$$

Therefore, $N^{\prime}(0)=e_{2}$, so the normal curvature of S at p in the direction e_{2} is equal to $k_{n}\left(e_{2}\right)=-\left\langle N^{\prime}(0), e_{2}\right\rangle=-1$.

The meridian through p has parametrization $\beta(t)=\left(\sqrt{1+t^{2}}, 0, t\right)$, with $\beta(0)=p$ and $\beta^{\prime}(0)=e_{3}$. A similar computation shows that the normal curvature of this curve at p is equal to $k_{n}\left(e_{3}\right)=1$.

Summarizing: the principal curvatures of S at p are -1 and 1 , corresponding to the principal directions e_{2} and e_{3}, respectively.
3. According to Euler's relation the asymptotic directions of S at p are given by $(\cos \vartheta) e_{2}+(\sin \vartheta) e_{3}$, with $(-1) \cos ^{2} \vartheta+(+1) \sin ^{2} \vartheta=0$, or, equivalently, $\tan ^{2} \vartheta=1$. Therefore $\vartheta= \pm \frac{\pi}{4}$, so the asymptotic directions of S at p are $e_{2} \pm e_{3}$.

The lines through p with these asymptotic directions as direction vectors are parametrized by $s \mapsto(1, s, \pm s)$. These lines are on S, so they are the asymptotic curves of S through p (cf Part 1).

Problem 4.

Let the curve in the $x z$-plane be parametrized by $s \mapsto(f(s), 0, g(s))$, with $f(s)>0$ for all s in the parameter interval I. Since the curve is regular, we may assume that
is has unit speed, i.e.,

$$
f^{\prime}(s)^{2}+g^{\prime}(s)^{2}=1
$$

A parametrization of the surface is given by

$$
\mathbf{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

with $(u, v) \in U \wedge I$. Here U is a suitable parameter domain for the angular variable u. A simple computation (see Example 4 on page 161) shows that the coefficients of the first fundamental form are given by

$$
\mathrm{E}(\mathrm{u}, v)=\mathrm{f}(v)^{2}, \quad \mathrm{~F}(\mathrm{u}, v)=0, \quad \mathrm{G}(\mathrm{u}, v)=1 .
$$

1. Since $G=1$, a meridian of S has unit speed parametrization $\alpha(s)=x\left(u_{0}, s\right)$), for some fixed $u_{0} \in \mathbb{R}$. We claim that its acceleration vector $\alpha^{\prime \prime}(s)$ is perpendicular to S at every point $\alpha(s)$. To see this, observe that $\alpha^{\prime \prime}(s)=x_{v v}\left(u_{0}, s\right)$, and

$$
\left\langle\mathbf{x}_{v v}, \mathbf{x}_{u}\right\rangle=\mathrm{F}_{v}-\frac{1}{2} \mathrm{G}_{u}=0, \quad \text { and }\left\langle\mathrm{x}_{v v}, \mathrm{x}_{v}\right\rangle=\frac{1}{2} \mathrm{G}_{v}=0 .
$$

Therefore, $\alpha^{\prime \prime}(s)$ is perpendicular to $T_{\alpha(s)} S$ for all s. Therefore, every meridian is a geodesic of S.
2. Since E is constant along a parallel circle $v=v_{0}$ of S, such a parallel circle has unit speed parametrization $\beta(s)=x\left(\omega_{0} s, v_{0}\right)$, for a suitably chosen $\omega_{0}>0$. More precisely, $\beta^{\prime}(s)=\omega_{0} \mathbf{x}_{u}\left(\omega_{0} s, v_{0}\right)$, so

$$
\left|\beta^{\prime}(s)\right|=\omega_{0} \sqrt{E\left(\omega_{0} s, v_{0}\right)}=\omega_{0} f\left(v_{0}\right)
$$

so we take $\omega_{0}=f\left(v_{0}\right)^{-1}$. We look for parallels with $\beta^{\prime \prime}(s)$ perpendicular to S for all s. Since $\beta^{\prime \prime}(s)=\omega_{0}^{2} x_{u u}\left(\omega_{0} s, v_{0}\right)$, and

$$
\left\langle\mathbf{x}_{\mathfrak{u u}}, \mathbf{x}_{\mathfrak{u}}\right\rangle=\frac{1}{2} E_{\mathfrak{u}}=0, \quad \text { and }\left\langle\mathbf{x}_{\mathfrak{u u}}, \mathbf{x}_{v}\right\rangle=F_{\mathfrak{u}}-\frac{1}{2} E_{v}=-\mathrm{ff}^{\prime},
$$

we see that

$$
\left\langle\beta^{\prime \prime}(s), \mathbf{x}_{\mathfrak{u}}\left(\omega_{0} s, v_{0}\right)\right\rangle=0
$$

and

$$
\left\langle\beta^{\prime \prime}(s), \mathbf{x}_{v}\left(\omega_{0} s, v_{0}\right)\right\rangle=-\omega_{0}^{2} f\left(v_{0}\right) f^{\prime}\left(v_{0}\right)=-\omega_{0} f^{\prime}\left(v_{0}\right)
$$

Therefore, the parallel circle is a geodesic iff $f^{\prime}\left(v_{0}\right)=0$ (since $\omega_{0}>0$), i.e., iff the contour curve C has a vertical tangent at $\left(f\left(v_{0}\right), 0, g\left(v_{0}\right)\right)$. Equivalently, in this case the meridian through every point of the parallel circle has a vertical tangent.
3. Let $\gamma(\mathrm{t})=\mathrm{x}(\mathrm{u}(\mathrm{t}), v(\mathrm{t}))$ be a curve on S , then

$$
\left\langle\gamma \wedge \gamma^{\prime}, e_{3}\right\rangle=u^{\prime}\left\langle\mathbf{x} \wedge \mathbf{x}_{u}, e_{3}\right\rangle+v^{\prime}\left\langle\mathbf{x} \wedge \mathbf{x}_{v}, e_{3}\right\rangle
$$

where $u^{\prime}, \nu^{\prime}, \gamma$ and γ^{\prime} are evaluated at t , and $\mathrm{x}, \mathrm{x}_{\mathrm{u}}$ and x_{v} are evaluated at $(u(\mathrm{t}), v(\mathrm{t}))$. Let $\xi(u, v)=f(v) \cos u$ and $\eta(u, v)=f(v) \sin u$ be the x - and the y-component of $\mathrm{x}(u, v)$, respectively. Then

$$
\left\langle\mathbf{x} \wedge \mathbf{x}_{u}, e_{3}\right\rangle=\left|\begin{array}{ll}
\xi & \xi_{u} \\
\eta & \eta_{u}
\end{array}\right|=\left|\begin{array}{cc}
f(v) \cos u & -f(v) \sin u \\
f(v) \sin u & f(v) \cos u
\end{array}\right|=f(v)^{2}
$$

A similar computation shows that $\left\langle\mathbf{x} \wedge \mathbf{x}_{v}, e_{3}\right\rangle=0$. Therefore,

$$
\left\langle\gamma \wedge \gamma^{\prime}, e_{3}\right\rangle=f(v(t))^{2} u^{\prime}(t)
$$

If γ is a geodesic, then $f^{2} u^{\prime}$ is constant along γ. See Clairaut's relation on page 256. In other words, the angular momentum is constant along geodesics.

