Mock Exam Geometry - June 2018

Note: This exam consists of four problems. Usage of the theory and examples of
Chapters 1:1-5, 2:1-5, 3:1-3, 4:1-6 of Do Carmo’s textbook is allowed. You may not
use the results of the exercises, with the exception of the results of Exercise 1-5:2,12,
4-3:1,2. Give a precise reference to the theory and/or exercises you use for solving
the problems.

Problem 1 (10410 = 20 pt.)
Consider the twisted cubic in R3, parametrized by o(t) = (t, t%, t3).

1. Calculate the curvature and torsion of the twisted cubic at an arbitrary point
o(t).

2. Calculate the Frenet frame {t(0),n(0),b(0)} of the twisted cubic at the point
(X(O) = (O)an)

Problem 2 (10+10=20 pt.)
Let g : R — R be a C™-function, and let f: R? — R be given by

fx,y) = g(x* +y?),
and let the surface S in R? be the graph of f.

1. Prove that the point (xo,yo) is elliptic iff A(xo,yo) > 0, and hyperbolic iff
A(x0,Yo) < 0, where

A(x,y) = g'(R) (g'(R) + 2Rg"(R)),
with R = x? +y2.

2. Let f(x,y) = x> +y*> — (x* + y?)?. Prove that the points of S that are neither
elliptic nor hyperbolic form two circles, both consisting of parabolic points.
(Note: in particular, S does not have any planar points.)

Problem 3 (8 + 8 + 9 = 25 pt.)
Let S be a regular surface in R3.

1. Prove: If S contains a line, then this line is an asymptotic curve of S.

In the remainder of this assignment S is a one-sheeted hyperboloid of revolution given
by x* 4+ y2 — z2 = 1. Furthermore, p is the point (1,0,0) of S.

2. Show that the principal curvatures of S at p are equal to 1 and —1, and deter-
mine the curvature lines of S through p.

3. Determine both asymptotic directions of S at p, and the corresponding asymp-
totic curves of S through p.



Problem 4 (8 4+ 8 + 9 = 25 pt.)
Let C be a regular curve (without self-intersections) in the half-plane {(x, 0, z) | x > 0}.
Let S be the surface of revolution in R3 obtained by rotating C about the z-axis.

1. Which meridians of S are geodesics? Give a proof of your statement(s).
2. Which parallel circles of S are geodesics? Give a proof of your statement(s).
The angular momentum of a regular curve o : R — S at «(t) is equal to o(t) Ao/ ().

3. Prove that the z-component of the angular momentum of a geodesic on S is
constant (i.e., independent of t).



Solutions

Problem 1.
1. We use the expressions for curvature and torsion from Exercise 1-5:12. To this end

we compute
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Problem 2.

1. Use Example 6.5.4 of the first edition, which is Example 6.6.5 in the second edition:
a point (x,y,f(x,y)) is elliptic (hyperbolic) iff fy fy, — fiy is positive (negative) at
the point (x,y). A straightforward computation yields

fx = 2xg’(R),

fy =2yg’(R),

fux = 2’ (R) + 4x%g” (R),
fxy :4X99/,(R)a

fyy = 29’ (R) +4y?g”(R).

The claim follows from fy.fyy — fiy —=4g’(R)? + 8Rg’(R)g”(R) = 4A(x,y).

2. In this particular case, g(R) = R — R?, s0 A(x,y) = (1 — 2R)(1 — 6R). The set of

points that are neither hyperbolic nor elliptic are the points on the graph of f with
R=x*+y? = %,z =gR)=JorR=x*+y? = %,z =g(R) = 35—6, which constitute

two circles on S. These points are parabolic, and not planar, since at these points f
has at least one non-zero second derivative.



Problem 3.

1. Let «(s) be a regular parametrization of the line, and let v be the direction vector
of the line. Let N(s) denote a differentiable unit normal vector field of S at «(s).
Since the line lies on S, we have (N(s),v) =0 for all s, so (N’(s),v) = 0. Therefore,
the normal curvature at every point of the line in the direction v is zero, so the line
is an asymptotic curve of S.

2. The lines of curvature of a surface of revolution are the meridians and the parallel
circles. See [Do Carmo, Example 4 on page 161]. Therefore, the lines of curvature
through p are the unit circle in the xy-plane (the parallel circle through p), and the
branch of the hyperbola in the xz-plane with equation x> —z? = 1,y = 0 that contains
p (the meridian through p).

The corresponding principal directions are e; and e3, respectively (the second
and third vector of the standard basis of Tp]R3). Since S is given by f(x,y,z) =
x? +y? —2z> —1 =0, a unit normal field of S is

vt 1 x 1 x

= ——(xY,z) = ——— _—
[ve oY VX2 +y2+ 22 _UZ V14222 EZ

Note that N(p) = ey (the first vector of the standard basis of T,R3). The parallel circle
through p has parametrization «(t) = (cost,sint,0), with «(0) = p and o’(0) = e;.
The normal along this curve is

cost
N(t) = | sint
0

Therefore, N’(0) = e;, so the normal curvature of S at p in the direction e, is equal
to kn(ez) = —(N’(0),e2) = —1.

The meridian through p has parametrization B(t) = (V1 + t2,0,t), with B(0) =p
and B’(0) = e3. A similar computation shows that the normal curvature of this curve
at p is equal to k,(e3) =1.

Summarizing: the principal curvatures of S at p are —1 and 1, corresponding to
the principal directions e, and e3, respectively.

3. According to Euler’s relation the asymptotic directions of S at p are given by
(cosd) ey + (sind) e3, with (—1)cos? 9 + (+1)sin?d = 0, or, equivalently, tan?d = 1.
Therefore ¥ = £7, so the asymptotic directions of S at p are e; £ e3.

The lines through p with these asymptotic directions as direction vectors are
parametrized by s — (1,s,%s). These lines are on S, so they are the asymptotic
curves of S through p (cf Part 1).

Problem 4.
Let the curve in the xz-plane be parametrized by s — (f(s),0, g(s)), with f(s) > 0
for all s in the parameter interval I. Since the curve is regular, we may assume that



is has unit speed, i.e.,
f'(s)2 +g'(s)* = 1.
A parametrization of the surface is given by

x(u,v) = (f(v) cosu, f(v) sinu, g(v)),

with (u,v) € UA L Here U is a suitable parameter domain for the angular variable
u. A simple computation (see Example 4 on page 161) shows that the coefficients of
the first fundamental form are given by

E(u,v) = f(v)?, Fu,v)=0, G(u,v)=1.

1. Since G = 1, a meridian of S has unit speed parametrization «(s) = x(uy,s)), for
some fixed uy € R. We claim that its acceleration vector «”(s) is perpendicular to S
at every point «(s). To see this, observe that o”(s) = x,y(uo, s), and

(X, Xu) =Fy — 3Gy =0, and (x,%y) = 3G, =0.

Therefore, o”’(s) is perpendicular to Ty)S for all s. Therefore, every meridian is a
geodesic of S.

2. Since E is constant along a parallel circle v = vy of S, such a parallel circle has
unit speed parametrization (s) = x(wyps,vo), for a suitably chosen wy > 0. More
precisely, B’(s) = woxy(wos, Vo), 8O

IB'(s)] = wov/E(wos, vo) = wof(vo),

so we take wy = f(vg)~'. We look for parallels with " (s) perpendicular to S for all
s. Since B”(s) = wW3xyu(wos, Vo), and

(Xu Xu) = JEu =0, and (xuy,Xy) = Fy — 3E, = —ff/,

we see that
(B"(8), xu(wos, vo)) = 0,
and
(B"(s), x(wos, vo)) = —awif(vo)f'(vo) = —awof’(vo).
Therefore, the parallel circle is a geodesic iff f/(vy) = 0 (since wy > 0), i.e., iff the

contour curve C has a vertical tangent at (f(vy),0, g(vo)). Equivalently, in this case
the meridian through every point of the parallel circle has a vertical tangent.

3. Let y(t) = x(u(t),v(t)) be a curve on S, then
YAV e3) =u/ (x Axy,e3) + V' (x A xy,e3),

where u’,v’,y and vy’ are evaluated at t, and x, x,, and x, are evaluated at (u(t),v(t)).
Let &(u,v) = f(v)cosu and n(u,v) = f(v)sinu be the x- and the y-component of
x(u,v), respectively. Then

£ g, _ f(v)cosu —f(v)sinu

=f(v)%.
n TMu

(x A\ xy,€3) =

f(v)sinu f(v)cosu



A similar computation shows that (x A x,,e3) = 0. Therefore,

(Y AY'yes) = fv(t)) u'(b).

If v is a geodesic, then f>u’ is constant along y. See Clairaut’s relation on page 256.
In other words, the angular momentum is constant along geodesics.



